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Summary. Two methods of deriving linear selection in- 
dices for non-linear profit functions have been proposed�9 
One is by linear approximation of profit, and another is 
the graphical method of Moav and Hill (1966). When 
profit is defined as the function of population means, the 
graphical method is optimal. In this paper, profit is 
defined as the function of the phenotypic values of indi- 
vidual animals; it is then shown that the graphical meth- 
od is not generally optimal�9 We propose new methods for 
constructing selection indices. First, a numerical method 
equivalent to the graphical method is proposed. Further- 
more, we propose two other methods using quadratic 
approximation of profit: one is based on Taylor series 
about means before selection, and the other is based on 
Tayler series about means after selection. Among these 
different methods, it is shown that the method using 
quadratic approximation based on Taylor series about 
means after selection is the most efficient. 

Key words: Selection index - Non-linear profit - New- 
ton-Raphson method - Taylor series 

Introduction 

Selection is practiced to improve a certain quantity relat- 
ed to the genetic properties of a population. Using the 
terminology of Goddard (1983), the quantity is called 
"profit". Selection index theory was originally formulated 
based on a profit function defined as a linear function of 
traits. However, in some cases, profit may be better char- 
acterized by a non-linear function of traits. Articles dis- 
cussing selection for efficiency of animal production have 
been published (Elsen et al. 1986), and many of them 
consider non-linear profit functions. Proposed methods 

of constructing selection indices to improve non-linear 
profit may be classified into two groups: a group of linear 
selection indices and a group of non-linear ones. The 
latter group includes one of the indices of Wilton et al. 
(1968), one of the indices of Harris (1970), the indices of 
RSnningen (1971), and the indices of Van Vleck (1983). 
Goddard (1983), however, pointed out that if component 
traits are inherited additively, genetic progress of profit 
based on linear selection indices is always greater than 
that based on non-linear ones. Thus, if the optimal selec- 
tion index for a certain non-linear profit function exists, 
it should exist among linear selection indices. This paper, 
therefore, considers only linear selection indices. 

Two different methods for deriving linear selection 
indices for non-linear profit functions have been pro- 
posed�9 The first is to approximate the profit function by 
a linear function, and use the partial derivatives of the 
profit function evaluated at the means before selection as 
economic weights in conventional method of construct- 
ing an index. In this method, the economic weight vector 
is expressed as 

ey 

8xi  

ef 
t = ~x2 (1) 

ef 
~Xn x=p 

where f is a profit function, and x and/1 are phenotypic 
and mean vectors of component traits, respectively. Us- 
ing (1), the index weight vector may be expressed as 

bo = p -  i G t (2) 
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where P and G are phenotypic and genotypic variance 
covariance matrices, respectively. This method was 
introduced by Moav and Hill (1966), Harris (1970), Mel- 
ton et al. (1979), James (1982) and Brascamp et al. (1985). 
The defect of this method, however, is that the error 
caused by linear approximation of profit is not always 
negligible, and it becomes greater as deviations from the 
means of the component  traits increase. Hence, the effi- 
ciency of the index decreases as the variance of the com- 
ponent traits and the genetic gains increase. 

The second method is the graphical method proposed 
by Moav and Hill (1966). [Originally this method was 
not intended as a formal way of finding the index weights, 
rather as a way of illustrating the principles. Later, 
Goddard  (1983) discussed it as a way of finding the index 
weights.] It derives an index from a diagram assuming 
two traits whose values have been transformed to have 
equal variances, equal heritabilities, and no correlation. 
Under a given selection intensity, the resulting linear 
selection index gives a response curve that forms a circle 
as index weights vary. If the profit contours are plotted 
on the same diagram, then the point on the response 
curve with the maximum profit can be located, and the 
index weights correspondingly deduced. The major dif- 
ferences of this method from the previous one are that 
this method evaluates the means after selection, and that 
the index weights vary as the selection intensity varies. 
However, this method also is defective, because it is not 
applicable to profit involving more than two traits and it 
is difficult to draw non-linear profit contours precisely. 

Non-linear profit functions could be defined in two 
ways: as the functions of phenotypic values of individual 
animals, or as the functions of population means. Goddard 
(1983) assumed the latter type of profit functions, and 
showed that the graphical method of Moav and Hill 
(1966) is optimal. However, if the former type of profit 
functions are assumed, the graphical method is no longer 
optimal: it maximizes the profit function of the means of 
component  traits, instead of maximizing the mean of the 
profit which is what is required, as Elsen et al. (1986) 
pointed out. To optimize the profit of the whole popula- 
tion, we should maximize the mean of the profit. 

In the present paper, we restrict ourselves to the profit 
functions on an individual basis and propose new meth- 
ods. The first one is a numerical method equivalent to the 
graphical method of Moav and Hill (1966). This method 
is not optimal in general, but it gives approximate solu- 
tion close to optimal. With a computer, it is conveniently 
applicable to profit functions of more than two traits. 
Other methods we propose are based on a quadratic 
approximation of profit. They are not optimal either, but 
we found that one of them is always more efficient than 
those which had been previously proposed. 

1 A numerical method equivalent to the graphical method 
of Moav and Hill (1966) 

1.1 N o t a t i o n s  a n d  a s s u m p t i o n s  

We use the following notations to describe the method: 
n the number of component traits; p a vector of popula- 
tion means before selection; d a vector of expected selec- 
tion responses; x a vector of phenotypic values of prog- 
eny after selection with expectation E (x) = / l  + d; f (x) 
non-linear profit function; i selection intensity; P pheno- 
typic variance covariance matrix; G genetic variance co- 
variance matrix; b a vector of index weights; ~r 2 variance 
of the index, i.e. tr 2 = b' Pb .  

We assume that all components traits are inherited 
additively. Further, we assume that matrices P and G are 
known and not changed by selection. Although these 
assumptions may be unrealistic, they approximate the re- 
ality sufficiently, can simplify the theory to a great degree, 
and will not pose a serious problem in application. We 
will consider only the case where the traits included in the 
index are the same as those included in the profit func- 
tion. 

1.2 G e n e r a l  f o r m u l a t i o n  

The graphical method of Moav and Hill (1966) finds the 
means with the maximum profit among all attainable 
means after selection under a given selection intensity. 
Under a given selection intensity i, as the direction of 
selection varies, expected selection responses d forms an 
ellipsoid defined by 

d ' G - i p G  - i  d = i 2 (3) 

which can be obtained by substituting b = ( ~ i / i )  G -  1 d 

into a]  = b ' P b .  Now our problem is to find d which 
maximizes 

f (E (x)) = f (/~ + d) 

among all d's which satisfy (3). We can get such a vector 
d by solving the following non-linear equation system 
with respect to d. 

h(d) + 2 2 G - i p G  - x  d = 0 

d'G 1 p G - i d - i 2  : 0  (4) 

where 2 represents a Lagrange multiplier and 

U(t~ + d) 

0dl 

U (• + d) 
h ( d )  = ad z (5) 

0f(/~ + d) 

Od, 



If the profit function is linear and its economic weight 
vector is a, we can solve (4) directly. The solution is 
d = i GP -1 G a ( a ' G P  -I  Ga) -1/2, which agrees with the 
expected selection response based on the conventional 
selection index. In general, if f(/4 + d) is non-linear, we 
cannot solve (4) directly, but we can solve it iteratively by 
the Newton-Raphson method. Then, between iterations, a 
vector of corrections of d, Ad, is obtained as a solution of 

IH(d2 ) -~- 22 G-1PG-i d t G - 1 p G  -1  26~- 1PG- ldl [A~d 1 0 

[ hi , ] 
= - -  d , G _ l P G _ l d _ i  2 (6) 

where 

H(d) = 

-o2fO, + d) O2f(u + d) 02f(t~ + d) 
Od 2 O d  i O d  2 " ' "  ~d i ~dl 

52f(p + d) 52f(p + d) 52f(~ + d ) /  

~ d  2 ~ d  1 5 d  2 " "  @d 2 Od, ] (7) 

~d, Od i 8 d .  ~ d  2 " "  ~d 2 

After obtaining d by iteration, we can get index weights by 

b = G - l d  (8) 

using the result of Pe~ek and Baker (1969) or Yamada  et 
al. (1975). These index weights give an index which has 
s tandard deviation equal to the selection intensity. 

Being iterative, this method needs a proper  initial 
value of d. If an inappropriate  initial value is used, there 
is a risk of obtaining an inappropriate  solution which 
does not maximize f(E(x)). The approximate  method 
based on (1) gives values close to the optimal solution, 
therefore it can be used as the initial value. It is expressed as 

d o = i G b o (b~) P bo)- 1/2 (9) 

where b o is given by (2). If Ad in (6) is assumed to be 
negligible, we can obtain the initial value of 2 as 

2G -a P G - i d o  2 + e = h(d) (10) 

from the first equation of (6), where e is a vector of errors 
caused by assuming Ad = 0. Applying the least squares 
method to (10), 2 becomes 

2 0  __ 1 [(d~ G - ~ P G -  i) (G- 1 PG - ~ do) ] -  1 

�9 (d~ G -  ~ P G -  1) h (do).  (11) 

It is sufficient to use this 20 as the initial value of 2. 
This method gives solutions equivalent to that of the 

graphical method of Moav  and Hill (1966), and has the 
advantage of being applicable to profit functions involv- 
ing more  than two traits and being conveniently com- 
puted with a computer.  However, this method maximizes 
f(E(x))  instead of E(f(x)),  and therefore does not give 
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the optimal solution. Nevertheless, it gives an approxi-  
mate solution close to optimal and gives the exact 
optimal solution when the profit is quadratic, as shall be 
described in the next subsection�9 

t.3 The optimal index for  quadratic profit 

Now we assume that a profit function is quadratic and 
defined by 

f (x )  = a' x + x ' a  x (12) 

as did Wilton et al. (1968), where A is a symmetric con- 
stant matrix and a is a constant vector. Then the expecta- 
tion of the profit after selection becomes 

E(f (x ) )  = a' E(x) + E(x')A E(x) + tr(AP) 

= f (E(x) )  + tr(AP) 

using the result for expectations of quadratic forms 
(Searle 1971). If we assume that P is not changed by 
selection, the difference between E (f(x)) and f ( E  (x)) is 
constant, so maximization of f (E(x) )  becomes equivalent 
to maximization of E (f(x)).  Hence, the method described 
in the previous subsection is optimal when the profit is 
quadratic. 

F rom (12), we get 

f (p + d) = d' (2 A t~ + a) + d' A d + Constant .  

Then we get H (d) = 2 A and h (d) = 2 A d + 2 A/~ + a, so 
(6) becomes 

2 d 'G  1 p G - 1  0 

[ 2 A d + 2 A p + a  ] 
= _ Ld, G _ i p G _ l  d _  izJ" 

(13) 

After iteration, index weights can be obtained by 
b = G -1 d. From (9) and (11), the initial values for d and 
2 may be expressed as 

do = i G b o (b'o Pbo)- 1/2 

i [(d~ G -  1 p G - 1 ) ( G - 1  p G - x  do)]- 1 20 = - 

�9 ( d ' o G - 1 p G - i ) ( 2 A d o  + 2A I~ + a) 

where 

b o = P - 1 G ( 2 A I ~  + a) (14) 

which is identical to the index weights of Wilton et al. 
(1968), as pointed out by Godda rd  (1968). 

Furthermore,  by substituting d = G b and Ad = G A b  
into (13) and modifying it, we finally get 

2 [  G A G + 2 P  P b  1 

F2GAGb + 2 G A  p + G a] 
= -- L b ' P b -  iz A" (15) 
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Table 1. Index weights and desired selection responses for the quadratic profit under various selection 
intensities 

Selection lndex weights 
intensity 

Desired selection responses 

bl b2 b2/b 1 dl d 2 dz/dt 

0 . 0 0 1  0.00001752 0.0001908 10.89 0.02681 0 .0003398  0.01268 
0.01 0.0001751 0.001909 10.90 0.2681 0 . 0 0 3 3 9 9  0.01268 
0.1 0.001750 0.01920 10.97 2.679 0.03411 0.01273 
0�9 0.008718 0.09842 11.29 13.37 0.1730 0.01294 
1 0.01736 0.2027 11.68 26.66 0.3520 0.01320 
2 0.03441 0.4277 12.43 53.04 0.7268 0.01370 
3 0.05116 0.6730 13.15 79.13 1.1222 0.01418 
4 0.06765 0.9367 13.85 104.96 1.5361 0.01463 
5 0.08387 1.2169 14.51 130.54 1.9668 0.01507 

If we use this equation, we can compute the optimum b 
without computing d. The index weights given by using 
(15) also give an index with standard deviation equal to 
the selection intensity. In (15), b o of(14) can be used as the 
initial value of b, but the scale of bo has to be changed to 
make the standard deviation of the index equal to the 
selection intensity; so the initial value of b is given by 

b ,  = i bo(b o Pbo) - ~/2. (16) 

The initial value of 2 is given by 

1 , -1 ' P ( 2 G A G b , + 2 G A # + G a ) .  2 o =  - ~ ( b ,  P P b . )  b ,  

1.4 A numerical  example  f o r  a quadratic profit  

We will use the same example as Wilton et al. (1968): 

f ( x )  = x ' A x  + a' x ,  

[ 0 00o 4 ] 
A = 0.00245 ' 

F1452.00 7.20] 
c = L 7.20 1.123' 

I-o.o95o] 1-418.95] 
a = Ll .0354j ,  It = L 13.35J' 

[2649.00 18.49~ 

Index weights and desired selection responses for 
various selection intensities are given in Table 1. Conver- 
gences of solutions were very fast: for example, under 
selection intensity of unity, corrections became less than 
10- lo  at the 4th iteration using either (13) or (15). Rela- 
tive index weights (b2/bl) and desired direction of im- 
provement (d2/dl) change as the selection intensity varies�9 
When the selection intensity approaches 0, b2/b 1 and 
dz/d 1 approach 10.89 and 0.01268, respectively, which are 
the values based on (14). 

2 Numerical methods based on quadratic approximation 

In general, if a profit function is not quadratic, the differ- 
ence between E ( f ( x ) )  and f ( E  (x)) is not constant, and 

the method described in Section I is not optimal. While 
we have no idea of how to get the optimal index, we can 
consider other approximate methods. 

2.1 Quadratic approximation based on Taylor series 

about means before selection 

Harris (1970) considered (1) as a linear approximation 
of profit based on Taylor series, and approximated the 
profit by 

f ( x )  - f ( i t )  + t ' (x  - t t) (17) 

where t is a constant vector defined by (1). However, this 
approximation is not precise enough. An alternative way 
is to approximate the profit by a quadratic function 
based on Taylor series, i.e., 

f ( x )  - f ( i t )  + t' (x - It) + 1 (x - It)' T(x - It) (18) 

where Tis a constant matrix defined as 

T =  

02 f a2 f a2 f 

aX 2 aX 10X 2 "'" aX 10X n 

a2 f a2 f a2 f 

ax2 ax~ ax2 2 "'" ax2 ax.  

~2f  ~2f  ~2f  

aX n aX 1 aX n aX 2 "�9 aX 2 x ~ p  

Generally, this approximation should be more precise 
than that based on (17). Now we consider a selection 
index which maximizes the expectation of profit approxi- 
mated by (18). Since (18) is quadratic, the method de- 
scribed in 1.3 may be used to derive the selection index. 
The expectation of (18) becomes 

E(f(x))  - f ( p )  + t 'd  + �89 Td + �89 tr (TP) 

1 d '  = t' d + ~ Td + Constant. 



Then the desired selection responses d can be obtained 
iteratively from 

2d'  G - 1 p G  -1 0 

= - -  d , G _ l p G _ i d _ i  2 . (19) 

The initial value of 2 is given by 

20 = -- �89 [(d6 G-1  P G -  1)(G- 1 p G-1  do)] -a 

�9 (d6G -1 P G - 1 ) ( T d o  + t) 

where d o is the initial value of d given by (9). After itera- 
tion, index weights can be obtained by b = G -  ~ d. Vector 
b can also be obtained directly from iteration if equation 
(19) is modified by substituting d = Gb and Ad = A G b  as 
in 1.3, which we will not describe in detail here. 

2.2 Quadratic approximation based on Taylor series 
about means after selection 

The defect of the method described in the previous sub- 
section is that approximation by (18) is not precise 
enough when d is large. To overcome this, we can con- 
sider quadratic approximation based on Taylor series 
about  means after selection instead of that before selec- 
tion�9 It is expressed as 

f ( x )  -- f ( i t  + d) + h(d) ' (x  -- It -- d) 

+ �89 (x - It - d)' H (at) (x -- It -- d), (20) 

where h (d) and H (d) are given by (5) and (7), respectively�9 
The expectation of (20) becomes 

E(f(x))  - f ( i t  + d) + �89 tr (PH(d)).  

As in (6), we get the following equation from which we 
can get the desired d iteratively: 

I H(d)  + W(d) + 22 G - 1 P G  -1 

2d,  G - 1  p G - I  

where 

1 
w (d) = ~-  

= -- I h(d) + w(d) l 
d 'G  - 1 P G  - l d -  i z 

-8 t r ( P H ( d ) )  

8dl 

8 tr ( P H  (d)) 

8d  2 

8 t r ( P H ( d ) )  

8d. 

(21) 
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and 

1 
w ( , o  = 

- ~ 2 t r ( P H ( d ) )  8 Z t r ( P H ( d ) )  8 2 t r ( P H ( d ) )  

8d21 8d  1 8 d  2 "'" 8d i 8d, 

82 tr ( P H  (d)) 82 tr ( P H  (d)) 82 tr (PH  (d)) 

8d  2 8 d  1 8d2 2 "'" 8d  2 8 d .  

8 2 t r ( P H ( d ) )  8 2 t r ( P H ( d ) )  8 2 t r ( P H ( d ) )  

8d. 8d a 8d. 8d 2 "'" 8d. 2 

The initial value of 2 used in (21) is given by 

i G - i  i p G - 1  20 = - 5 [(do P G -  i) (G- do)]- 1 

�9 (d~ G -  1 P G -  1) (h (do) + w (d0)) 

where d o is the initial value of d which is given by (9)�9 

3 Comparison of the four methods 

The methods of computing linear selection indices for 
non-linear profit functions are summarized as follows: 
M e t h o d  1: Deriving economic weights using partial de- 
rivatives evaluated at means before selection. This is also 
considered as the method maximizing an expectation of 
a linear approximate function of profit based on Taylor 
series about means before selection. 
M e t h o d  2: Numerical evaluation equivalent to the graph- 
ical method of Moav and Hill (1966). 
M e t h o d 3 :  Maximizing an expectation of a quadratic 
approximate function based on Taylor series about  
means before selection. 
M e t h o d 4 :  Maximizing an expectation of a quadratic 
approximate function based on Taylor series about  
means after selection. 

A primary difference among these methods lies in the 
approximation of the profit function. The approximate 
functions on which these methods are based are summa- 
rized as follows: 
M e t h o d  1: f ( x )  - f ( i t )  + t ' ( x  - It) 
M e t h o d 2 :  f (x) - f (it + d) 
Method3." f (x) - f (it) + t' (x -- it) + �89 (x -- It)' T (x - It) 
M e t h o d 4 :  f ( x )  - f ( i t  + d) + h(d) ' ( x  - It - d) 

+ �89 ( x  - It - d) '  H (a) ( x  - It - a~.  

Except for Method  2, each method maximizes expectation 
of its approximate function of profit�9 However, because 
E( f ( i t  + d) + h(d)' (x -- It -- d)) = f ( p + d ) ,  M e t h o d 2  also 
can be considered as the method that maximizes the 
expectation of the approximate function which is ex- 
pressed as 

f ( x )  -- f ( i t  + d) + h (d)' (x -- It -- d). 

This function can be considered as a linear approxima- 
tion based on Taylor series about  means after selection. 
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Therefore, all four methods are considered as those which 
maximize the expectations of the approximate functions 
of the profit based on Taylor series. 

These four methods may be classified into two 
groups, depending on whether the approximate function 
is linear or quadratic, and depending on whether Taylor 
series is expanded about/~ or about p + d. These classi- 
fications are summarized in Table 2. 

In general, a quadratic approximation is more precise 
than a linear one, so we can say that Method 3 is more 
efficient than Method 1, and Method 4 is more efficient 
than Method 2. On the other hand, approximation by 
Taylor series is more precise expanded about means after 
selection than before selection, so we can say that 
Method 2 is more efficient than Method 1, and Method 4 
is more efficient than Method3.  From these facts, we 
conclude that Method 4 is always the most efficient and 
Method ! is the least efficient. It is not clear which is 
more efficient between Method 2 and Method 3; it might 
depend on circumstances. 

When non-linear profit functions are defined on a 
population mean basis, the graphical method of Moav 
and Hill (1966) (which is equivalent to Method 2) is op- 
timal, as shown by Goddard  (1983). However, when non- 
linear profit functions are defined on an individual 
animal basis, this is not true except for quadratic profit, 
and more efficient methods could exist�9 

We have only considered the situation where the 
traits included in the selection index are the same as those 
included in the profit function�9 When not all traits are 
included in the index, the four methods need some modi- 
fications which are described in the Appendix. 

4 A numerica l  i l lustrat ion o f  the methods  
for non-l inear profit  

We consider the following hypothetical problem to illus- 
trate the methods. Let 

[,0] [~176 f ( x ) = - - ,  /~= P =  G =  
x 2 10 ' ' 0.5 

where profit function f ( x )  represents the efficiency of 
animal production, and x 1 and x 2 are traits associated 

Table 2. Classification of the four methods depending on how to 
approximate the profit 

Is the approximate 
function linear or 
quadratic? 

Is Taylor series expanded about B 
or B + d ?  

B B + d  

Linear Method l Method 2 
Quadratic Method 3 Method 4 

with return and cost of production, respectively; they are 
assumed to be uncorrelated for simplicity. Vector and 
matrices required to compute the indices are given in the 
following: 

[ 0 . 1 ]  
t = - 0 . 1  ' 

h ( d ) =  I 

H(d)  = 

I 0 
T =  -0 .01 

1 

10 + d 2 

10 + d 1 ' 

(10 + d2) 2 

-0 .011  
0.02] '  

1 
0 

(10 + d2) 2 

1 2 ( 1 0  + d 0 ' 

(10 + d2) 2 (10 + d2) 3 

tr (PH (d)) - 

W(d) = 

2(10 + dl) 
(10 q- d2) 3 ' w(d) : i'1 (10 + a2) 3 , 

3 (10 + dO[ 

[ 31 0 (10 + d2) 4 

3 12(10 + dl) ~ 

(10 + d2) 4 (10 + d2) 5 

Desired selection responses and increases of mean 
profit based on the four methods for various selection 
intensities are given in Table 3. In all the methods (2, 3 
and 4), convergences of the desired selection responses 
were very fast: for example, under selection intensity of 
unity, corrections became less than 10-10 at the 4th itera- 
tion in all methods. The increases of mean profit were 
computed by numerical integration assuming bivariate 
normal distribution. We assumed that variances and 
covarinces are invariant to selection. Differences in in- 
creases of  mean profit among methods are generally not 
very large: they are very small when the selection intensity 
is small, but increase as the selection intensity becomes 
greater. For  all selection intensities, Method 4 is the best 
and Method 1 is the worst, as was expected. The second 
is Method2  and the third is Method3, but their differ- 
ences are very small when the selection intensity is small. 

In this example, the advantage of Method 4 over the 
other methods, especially Method 2, was small�9 However, 
this may not always be true. This example is hypothetical 
and used only for illustrating, hence it is very simple and 
involves only two traits�9 In practical application, the 
profit function may be more complicated and involve 
many traits, and there would be a possibility of greater 
differences among methods. 
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Selection Method Desired selection responses Mean profit 
intensity after selection 

d~ d 2 

Increase of mean 
profit 

0.01 1 0.0035355 -0.0035355 1.01103835 
2 0.0035343 -0.0035368 1.01103835 
3 0.0035343 -0.0035368 1.01103835 
4 0.0034994 -0.0035713 1.01103839 

0.1 1 0.0353553 -0.0353553 1.01756178 
2 0.0352301 -0.0354801 1.01756210 
3 0.0352310 -0.0354792 1.01756209 
4 0.0348782 -0.0358262 1.01756250 

0.5 1 0.176777 -0.176777 1.0470802 
2 0.173624 -0.179874 1.0470932 
3 0.173734 -0.179768 1.0470930 
4 0.171789 -0.181627 1.0470954 

1 1 0.353553 -0.353553 1.0852300 
2 0.340832 -0.365832 1.0853096 
3 0.341712 -0.365011 1.0853072 
4 0.336966 -0.369397 1.0853145 

2 1 0.70711 -0.70711 1.166017 
2 0.65534 -0.75534 1.166583 
3 0.66228 -0.74925 1.166557 
4 0.64675 -0.76270 1.166596 

3 1 1.06066 -1.06066 1.253406 
2 0.94218 -1.16718 1.255341 
3 0.96522 -1.14820 1.255213 
4 0.92786 -1.17859 1.255365 

4 1 1.41421 - 1.41421 1.348255 
2 1.20000 - 1.60000 1.353097 
3 1.25349 -1.55845 1.352664 
4 1.17875 -1.61572 1.353139 

5 1 1.76777 -1.76777 1.451578 
2 1.42743 -2.05243 1.461793 
3 1.52959 -1.97746 1.460611 
4 1.39780 -2.07271 1.461864 

0.00072219 
0.00072220 
0.00072220 
0.00072224 

0.00724562 
0.00724594 
0.00724594 
0.00724634 

0.0367640 
0.0367771 
0.0367768 
0.0367792 

0.0749139 
0.0749934 
0.0749911 
0.0749983 

0.155701 
0.156267 
0.156241 
0.156280 

0.243090 
0.245024 
0.244897 
0.245049 

0.337939 
0.342780 
0.342347 
0.342823 

0.441262 
0.451477 
0.450295 
0.451548 
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Appendix 

In the text, it was assumed that the traits included in the 
profit function were the same as those included in the 
selection index. However, when traits are difficult and 
expensive to measure, they will be excluded from the 
selection index in spite of their economic importance. 
Thus, not  all traits in the profit function can be included 
in the index. In such cases, the four methods described in 
the text cannot  be used to construct the index directly, 
and some modifications are necessary. 

Now traits are divided into two groups: one is the 
group of m traits included in the index and another is the 
group of n - m traits not  included in the index. Accord- 
ing to this division, the vectors and the matrices defined 
in 1.1 are partit ioned as follows: 

~/ = ~'/2 d2 ' UP12 P22J  and 

FG:I 
G = LG12 G22~ 

where/~l is the mean vector of the m traits included in the 
index and/~2 is the mean vector of thc n - m traits not 
included in the index, etc. When the selection based on m 
traits causcs the expected selection responses d, in these m 
traits, the expected selection responses in the remaining 
n - m traits will become 

d 2 = G~. 2 Gii i d 2 . (A.1) 

Thus, the expected selection responses of all n traits 
caused by selection on m traits can be expressed as 

[ ' ]  d = S d  i where S =  G'lzG/1 i " (A.2) 

Using (AA) or (A.2), the four methods for constructing the 
selection indices can be rewritten. 

Method t 

The expectation of a linear approximate profit function 
for Method 1 can be rewritten as 

E(f(x))  - t 'Sd l  + Constant.  

Then the economic weight vector becomes S' t ,  and the 
index weight vector of m traits is found to be 

b = Pia ~ Gil S ' t  = P i (  [GlilG12] t. 

Me thod 2 

The expectation of a linear approximate profit function 
for Method 2 can be rewritten as 

E(f (x) )  = f ( # l  + da, ~'/2 ~- 612 Glad1). 

Now our problem is to find d i which maximizes 

f ( I t l  + dl,/*2 + G'i2 Gi-11 dl) 

subject to 

d'l Gl-i i P l l  Glli  dl = i2" 

Such a vector d 1 can be obtained iteratively from 

2d'l Gl-i i P i l  Gil i 0 

hi (dl) 

=-[d,lGlllPllGllidl-iz? 
where 

h i ( d0  = { L f ( l ~ i + d i , P z + G ' i z G i l l d i ) }  

Hl(d l )  = edl, Odu f (# i  + dl,~i 2 + {~12 a l l  1 dl) 

and dli (i = I . . . . .  m) is the i-th element o fd  i . After obtain- 
ing d by iteration, we can get the index weight vector from 

b = Gii i d 1 . 

Method 3 

The expectation of a quadratic approximate profit func- 
tion for Method 3 can be rewritten as 

1 d~ S' TS dl + Constant. E (f(x)) - t 'S  d 1 + 

Thus the desirable dl can be obtained iteratively from 

S' TS d 1 + S' t ] 
= - Ld'i G i l  1 P1 Gfl  1 dl - i2_] ' 

Method 4 

The expectation of a quadratic approximate profit func- 
tion for Method 4 can be rewritten as 

E(f(x) )  - f (P l  + dl,  P2 + G'12 G;ll dl) + �89 
Thus the desirable d 1 can be obtained iteratively from 

I Hi(di)+Wl(dl)+2d'l Gll i Pii2 ~" Gl-li P i i  G l l i G i - 1 1  2GllPllGildl]o 

= -- d , l G i l i P l l G ~ d i  -- i 2 

where 

{1 ~ tr(PHi (dl)) } and 
wi(di) = 2 ~dil 

1 82 tr (PH i (dO) ~. 


